Model:

Times Series from the ECMWF

Updated:
Update monthly
Greenwich Mean Time:
12:00 UTC = 17:00 IST
Resolution:
1.0° x 1.0°
Parameter:
Cloud cover (low,middle,high,total)
Description:
Clouds are vertically divided into three levels: low, middle, and high. Each level is defined by the range of levels at which each type of clouds typically appears.

Level Polar Region Temperate Region Tropical Region
High Clouds 10,000-25,000 ft
(3-8 km)
16,500-40,000 ft
(5-13 km)
20,000-60,000 ft
(6-18 km)
Middle Clouds 6,500-13,000 ft
(2-4 km)
6,500-23,000 ft
(2-7 km)
6,500-25,000 ft
(2-8 km)
Low Clouds Surface-6,500 ft
(0-2 km)
Surface-6,500 ft
(0-2 km)
Surface-6,500 ft
(0-2 km)


The types of clouds are:

High clouds: Cirrus (Ci), Cirrocumulus (Cc), and Cirrostratus (Cs). They are typically thin and white in appearance, but can appear in a magnificent array of colors when the sun is low on the horizon.

Middle clouds: Altocumulus (Ac), Altostratus (As). They are composed primarily of water droplets, however, they can also be composed of ice crystals when temperatures are low enough.

Low clouds: Cumulus (Cu), Stratocumulus (Sc), Stratus (St), and Cumulonimbus (Cb) are low clouds composed of water droplets.
Introduction to seasonal forecasting:
The production of seasonal forecasts, also known as seasonal climate forecasts, has undergone a huge transformation in the last few decades: from a purely academic and research exercise in the early '90s to the current situation where several meteorological forecast services, throughout the world, conduct routine operational seasonal forecasting activities. Such activities are devoted to providing estimates of statistics of weather on monthly and seasonal time scales, which places them somewhere between conventional weather forecasts and climate predictions.
 
In that sense, even though seasonal forecasts share some methods and tools with weather forecasting, they are part of a different paradigm which requires treating them in a different way. Instead of trying to answer to the question "how is the weather going to look like on a particular location in an specific day?", seasonal forecasts will tell us how likely it is that the coming season will be wetter, drier, warmer or colder than 'usual' for that time of year. This kind of long term predictions are feasible due to the behaviour of some of the Earth system components which evolve more slowly than the atmosphere (e.g. the ocean, the cryosphere) and in a predictable fashion, so their influence on the atmosphere can add a noticeable signal.
©Copernicus