模式:

RAP (Rapid Refresh)

更新:
24 times per day, from 00:00 - 23:00 UTC
格林尼治平时:
12:00 UTC = 20:00 北京时间
Resolution:
0.128° x 0.123°
参量:
降水:
东亚降水(毫米或升/平方米)
描述:
降水图 - 每6小时更新一次 - 显示东亚地区模式计算的降水分布情况。 降水区用等雨量线标出。 然而,目前模式算出的降水还不是很可靠。如果您比较一下模式结果和降水实测值,您会 发现模式结果只能算得上降水的一级近似值。不过,这幅图对于专业气象预报员却是个重 参考。

RAP:
RAP
The Rapid Refresh (RAP) is a NOAA/NCEP operational weather prediction system comprised primarily of a numerical forecast model and analysis/assimilation system to initialize that model. It is run with a horizontal resolution of 13 km and 50 vertical layers. ,
The RAP was developed to serve users needing frequently updated short-range weather forecasts, including those in the US aviation community and US severe weather forecasting community. The model is run for every hour of day and is integrated to 18 hours for each cycle. The RAP uses the ARW core of the WRF model and the Gridpoint Statistical Interpolation (GSI) analysis - the analysis is aided with the assimilation of cloud and hydrometeor data to provide more skill in short-range cloud and precipitation forecasts.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://zh.wikipedia.org/wiki/數值天氣預報(as of Feb. 9, 2010, 20:50 UTC).