Model:

Times Series from the ECMWF

Updated:
Update monthly
Greenwich Mean Time:
12:00 UTC = 14:00 CEST
Resolution:
1.0° x 1.0°
Parameter:
Sea Level Pressure in hPa (solid lines) and equivalent potential temperature at 700 hPa (dashed and coloured)
Description:
The equivalent potential temperature map - updated every 6 hours - shows the modelled equivalent potential temperature at the 850hPa level. The equivalent potential temperature is commonly referred to as Theta-e (θe). θe is the temperature of a parcel of air after it was lifted until it became saturated with water vapour (adibatically). When this parcel becomes saturated and condensation begins, the process of condensation releases latent heat into the surrounding air. This latent heat further warms the air making the air even more buoyant. We refer to this as a moist adiabatic or saturated adiabatic process. Moist adiabatic expansion increases the instability of the parcel. If this process of moist adiabatic expansion continues, all of the water may condense out of the rising parcel and precipitate out, yielding a dry parcel, and is dropped adiabatically to an atmospheric pressure of 1000 hPa. The potential temperature of that new dry parcel is called the equivalent potential temperature (θe) of the original moist parcel
In meteorology θe is used to indicate areas with unstable and thus positively buoyant air. The θe of an air parcel increases with increasing temperature and increasing dewpoint as for the latter more latent heat that can be released. Therefore, in a region with adequate instability, areas of relatively high θe (called θe ridges) are often the burst points for thermodynamically induced thunderstorms and MCS's. θe ridges can often be found in those areas experiencing the greatest warm air advection and moisture advection. (source: the weather prediction Keep in mind that if a strong cap is in place, convective storms will not occur even if θe is high.
As different origins of airmasses largely determine their own θe, one can use this parameter as a marker. Fronts are easily seen as steep gradients in θe. The boundary layer θe shows where fronts are located near the surface, while 700 hPa θe shows where they are near the 3000 m level. In winter it occurs often that warm fronts do not penetrate into the heavy, cold airmass near the surface.
Introduction to seasonal forecasting:
The production of seasonal forecasts, also known as seasonal climate forecasts, has undergone a huge transformation in the last few decades: from a purely academic and research exercise in the early '90s to the current situation where several meteorological forecast services, throughout the world, conduct routine operational seasonal forecasting activities. Such activities are devoted to providing estimates of statistics of weather on monthly and seasonal time scales, which places them somewhere between conventional weather forecasts and climate predictions.
 
In that sense, even though seasonal forecasts share some methods and tools with weather forecasting, they are part of a different paradigm which requires treating them in a different way. Instead of trying to answer to the question "how is the weather going to look like on a particular location in an specific day?", seasonal forecasts will tell us how likely it is that the coming season will be wetter, drier, warmer or colder than 'usual' for that time of year. This kind of long term predictions are feasible due to the behaviour of some of the Earth system components which evolve more slowly than the atmosphere (e.g. the ocean, the cryosphere) and in a predictable fashion, so their influence on the atmosphere can add a noticeable signal.
©Copernicus